Given $${\text{f}}\left( {\text{z}} \right) = \frac{1}{{{\text{z}} + 1}} - \frac{2}{{{\text{z}} + 3}}.$$ If C is a counter clockwise path in the z-plane such that |z + 1| = 1, the value of $$\frac{1}{{2\pi {\text{j}}}}\oint_{\text{C}} {{\text{f}}\left( {\text{z}} \right){\text{dz}}} $$ is
A. -2
B. -1
C. 1
D. 2
Answer: Option C
Related Questions on Complex Variable
A. -x2 + y2 + constant
B. x2 - y2 + constant
C. x2 + y2 + constant
D. -(x2 + y2) + constant
The product of complex numbers (3 - 2i) and (3 + i4) results in
A. 1 + 6i
B. 9 - 8i
C. 9 + 8i
D. 17 + 6i
If a complex number $${\text{z}} = \frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}$$ then z4 is
A. $$2\sqrt 2 + 2{\text{i}}$$
B. $$\frac{{ - 1}}{2} + \frac{{{\text{i}}{{\sqrt 3 }^2}}}{2}$$
C. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}$$
D. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{8}$$

Join The Discussion