Given $$\mathop y\limits^{..} \left( t \right) + 3\mathop y\limits^. \left( t \right) + 4y\left( t \right) = 2\mathop x\limits^{..} \left( t \right) + 7\mathop x\limits^. \left( t \right) + 8x\left( t \right)$$
Then H(s) is given by
A. $$H\left( s \right) = \frac{{{s^2} + 3s + 4}}{{2{s^2} + 7s + 8}}$$
B. $$H\left( s \right) = \frac{{2{s^2} + 7s + 8}}{{{s^2} + 3s + 4}}$$
C. $$H\left( s \right) = \frac{{{s^2} + 7s + 8}}{{2{s^2} + 3s + 4}}$$
D. $$H\left( s \right) = \frac{{{s^2} + 8s + 7}}{{2{s^2} + 3s + 4}}$$
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion