Given $$\overrightarrow {\text{F}} = \left( {{{\text{x}}^2} - 2{\text{y}}} \right)\overrightarrow {\text{i}} - 4{\text{yz}}\overrightarrow {\text{j}} + 4{\text{x}}{{\text{z}}^2}\overrightarrow {\text{k}} ,$$ the value of the line integral $$\int\limits_{\text{c}} {\overrightarrow {\text{F}} \cdot d\overrightarrow l } $$ along the straight line c from (0, 0, 0) to (1,1,1) is
A. $$\frac{3}{{16}}$$
B. 0
C. $$\frac{{ - 5}}{{12}}$$
D. -1
Answer: Option D
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion