Given that F(s) is the one-sided Laplace transform of f(t), the Laplace transform of $$\int\limits_0^t {f\left( \tau \right)} d\tau $$ is
A. sF(s) - f(0)
B. $${1 \over s}F\left( s \right)$$
C. $$\int\limits_0^s {F\left( \tau \right)} d\tau $$
D. $${1 \over s}\left[ {F\left( s \right) - f\left( 0 \right)} \right]$$
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion