Given that h(t) = 10e-10u(t), and e(t) = sin10t.u(t), the Laplace transform of the signal $$f\left( t \right) = \int\limits_{\tau = 0}^t {h\left( {t - \tau } \right)e\left( \tau \right)d\tau } $$ is given by
A. $$\frac{{10}}{{\left( {s + 10} \right)\left( {{s^2} + 100} \right)}}$$
B. $$\frac{{10\left( {s + 10} \right)}}{{\left( {{s^2} + 100} \right)}}$$
C. $$\frac{{100}}{{\left( {s + 10} \right)\left( {{s^2} + 100} \right)}}$$
D. $$\frac{1}{{\left( {s + 10} \right)\left( {{s^2} + 100} \right)}}$$
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β
Join The Discussion