Given that x1(t) = ek1tu(t) and x2(t) = e-k2tu(t). Which one of the following gives their convolution?
A. $$\frac{{\left[ {{e^{{k_1}t}} - {e^{ - {k_2}t}}} \right]}}{{\left[ {{k_1} + {k_2}} \right]}}$$
B. $$\frac{{\left[ {{e^{{k_1}t}} - {e^{ - {k_2}t}}} \right]}}{{\left[ {{k_2} - {k_1}} \right]}}$$
C. $$\frac{{\left[ {{e^{{k_1}t}} + {e^{ - {k_2}t}}} \right]}}{{\left[ {{k_2} + {k_1}} \right]}}$$
D. $$\frac{{\left[ {{e^{{k_1}t}} + {e^{ - {k_2}t}}} \right]}}{{\left[ {{k_2} - {k_1}} \right]}}$$
Answer: Option A
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion