Solution (By Examveda Team)
$$\eqalign{
& {\text{We know that }} \cr
& {\text{tan}}\left( {{{90}^ \circ } - \theta } \right) = {\text{cot}}\theta \cr
& {\text{and, cot}}\left( {{{90}^ \circ } - \theta } \right) = {\text{tan}}\theta \cr
& \Rightarrow {\text{tan}}\left( {4\theta - {{50}^ \circ }} \right) = {\text{cot}}\left( {{{50}^ \circ } - \theta } \right) \cr
& \Rightarrow \cot \left[ {{{90}^ \circ } - \left( {4\theta - {{50}^ \circ }} \right)} \right] = {\text{cot}}\left( {{{50}^ \circ } - \theta } \right) \cr
& \Rightarrow {90^ \circ } - \left( {4\theta - {{50}^ \circ }} \right) = \left( {{{50}^ \circ } - \theta } \right) \cr
& \Rightarrow {90^ \circ } - 4\theta + {50^ \circ } = {50^ \circ } - \theta \cr
& \Rightarrow {90^ \circ } = 3\theta \cr
& {\text{then}},\theta = {30^ \circ } \cr} $$
Join The Discussion