If θ is a acute angle and sin(θ + 18°) = $$\frac{1}{2}{\text{,}}$$ then the value of θ in circular measure is?
A. $$\frac{\pi }{{12}}$$ Radians
B. $$\frac{\pi }{{15}}$$ Radians
C. $$\frac{{2\pi }}{5}$$ Radians
D. $$\frac{{3\pi }}{{13}}$$ Radians
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{
& {\text{sin}}\left( {\theta + {{18}^ \circ }} \right){\text{ = }}\frac{1}{2} \cr
& {\text{sin}}\left( {\theta + {{18}^ \circ }} \right) = {\text{sin }}{30^ \circ } \cr
& \theta + {18^ \circ } = {30^ \circ } \cr
& \therefore \theta = {12^ \circ } \cr
& {\text{We know that,}} \cr
& {180^ \circ } = \pi \cr
& {12^ \circ } = \frac{\pi }{{{{180}^ \circ }}} \times 12 = \frac{\pi }{{15}} \cr} $$
Join The Discussion