Solution (By Examveda Team)
$$\eqalign{
& {\cos ^2}\theta = 3\left( {{{\cot }^2}\theta - {{\cos }^2}\theta } \right) \cr
& {\cos ^2}\theta = 3{\cos ^2}\theta \left( {\frac{1}{{{{\sin }^2}\theta }} - 1} \right) \cr
& 1 = 3\left( {{\text{cose}}{{\text{c}}^2}\theta - 1} \right) \cr
& \frac{1}{3} + 1 = {\text{cose}}{{\text{c}}^2}\theta \cr
& \frac{2}{{\sqrt 3 }} = {\text{cosec}}\,\theta \cr
& {\text{cosec }}{60^ \circ } = {\text{cosec}}\,\theta \cr
& \theta = {60^ \circ } \cr
& \Rightarrow {\left( {\frac{1}{2}\sec \theta + \sin \theta } \right)^{ - 1}} \cr
& = {\left( {\frac{1}{2}\sec {{60}^ \circ } + \sin {{60}^ \circ }} \right)^{ - 1}} \cr
& = {\left( {\frac{1}{2} \times 2 + \frac{{\sqrt 3 }}{2}} \right)^{ - 1}} \cr
& = {\left( {\frac{{2 + \sqrt 3 }}{2}} \right)^{ - 1}} \cr
& = \frac{2}{{2 + \sqrt 3 }} \cr
& = 2\left( {2 - \sqrt 3 } \right) \cr} $$
Join The Discussion