Solution (By Examveda Team)
$$\eqalign{
& 3{\sec ^2}\theta + \tan \theta - 7 = 0 \cr
& \Rightarrow 3\left( {1 + {{\tan }^2}\theta } \right) + \tan \theta - 7 = 0 \cr
& \Rightarrow 3{\tan ^2}\theta + \tan \theta - 4 = 0 \cr
& \Rightarrow 3{\tan ^2}\theta + 4\tan \theta - 3\tan \theta - 4 = 0 \cr
& \Rightarrow \tan \theta \left( {3\tan \theta + 4} \right) - 1\left( {3\tan \theta + 4} \right) = 0 \cr
& \Rightarrow \left( {3\tan \theta + 4} \right)\left( {\tan \theta - 1} \right) = 0 \cr
& \Rightarrow \tan \theta = 1\,\,\,\,\,\,\,\,\,\therefore \theta = {45^ \circ } \cr
& \therefore \,\frac{{2\sin \theta + 3\cos \theta }}{{{\text{cosec}}\,\theta + \sec \theta }} \cr
& = \frac{{2\left( {\frac{1}{{\sqrt 2 }}} \right) + 3\left( {\frac{1}{{\sqrt 2 }}} \right)}}{{\sqrt 2 + \sqrt 2 }} \cr
& = \frac{{\frac{5}{{\sqrt 2 }}}}{{2\sqrt 2 }} \cr
& = \frac{5}{4} \cr} $$
Join The Discussion