If a matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 2&4 \\ 1&3 \end{array}} \right]\] and matrix \[{\text{B}} = \left[ {\begin{array}{*{20}{c}} 4&6 \\ 5&9 \end{array}} \right]\] the transpose of product of these two matrices i.e., (AB)T is
A. \[\left[ {\begin{array}{*{20}{c}} {28}&{19} \\ {34}&{47} \end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}} {19}&{34} \\ {47}&{28} \end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}} {48}&{33} \\ {28}&{19} \end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}} {28}&{19} \\ {48}&{33} \end{array}} \right]\]
Answer: Option D
Related Questions on Linear Algebra
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2

Join The Discussion