If A(0, 4, 3), B(0, 0, 0) and C(3, 0, 4) are three points defined in x, y, zeo-ordinate system, then which of the following vector is perpendicular to both vectors \[\overrightarrow {{\text{AB}}} \] and \[\overrightarrow {{\rm{BC}}} .\]
A. \[16{\rm{\hat i}} + 9{\rm{\hat j}} - 12{\rm{\hat k}}\]
B. \[16{\rm{\hat i}} - 9{\rm{\hat j}} + 12{\rm{\hat k}}\]
C. \[16{\rm{\hat i}} - 9{\rm{\hat j}} - 12{\rm{\hat k}}\]
D. \[16{\rm{\hat i}} + 9{\rm{\hat j}} + 12{\rm{\hat k}}\]
Answer: Option C
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion