Examveda If cosθ + secθ = $$\sqrt 3 ,$$ then the value of (cos3θ + sec3θ) is? A. $$\frac{1}{{\sqrt 2 }}$$B. 1D. $$\sqrt 2 $$Answer: Option C Solution (By Examveda Team) $$\eqalign{ & {\text{cos}}\theta + \sec \theta = \sqrt 3 \cr & {\text{Cubing both sides}} \cr & {\text{co}}{{\text{s}}^3}\theta + {\sec ^3}\theta + 3{\text{cos}}\theta \sec \theta \left( {{\text{cos}}\theta + \sec \theta } \right) = 3\sqrt 3 \cr & {\text{co}}{{\text{s}}^3}\theta + {\sec ^3}\theta + 3\sqrt 3 = 3\sqrt 3 \cr & {\text{co}}{{\text{s}}^3}\theta + {\sec ^3}\theta = 0 \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & {\text{cos}}\theta + \sec \theta = \sqrt 3 \cr & {\text{Cubing both sides}} \cr & {\text{co}}{{\text{s}}^3}\theta + {\sec ^3}\theta + 3{\text{cos}}\theta \sec \theta \left( {{\text{cos}}\theta + \sec \theta } \right) = 3\sqrt 3 \cr & {\text{co}}{{\text{s}}^3}\theta + {\sec ^3}\theta + 3\sqrt 3 = 3\sqrt 3 \cr & {\text{co}}{{\text{s}}^3}\theta + {\sec ^3}\theta = 0 \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion