If $$\cos \pi x = {x^2} - x + \frac{5}{4}{\text{,}}$$ then the value of x will be ?
B. 1
C. -1
D. None of the above
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & \cos \pi x = {x^2} - x + \frac{5}{4} \cr & = {x^2} - 2 \times x \times \frac{1}{2} + \frac{1}{4} - \frac{1}{4} + \frac{5}{4} \cr & = {\left( {x - \frac{1}{2}} \right)^2} + 1 > 1 \cr & = - 1 \leqslant \cos x \leqslant 1 \cr} $$∴ So, value of x is none of the above
Join The Discussion