If $$\frac{{{{\cos }^2}\theta }}{{{{\cot }^2}\theta - {{\cos }^2}\theta }} = 3,$$ 0° < θ < 90°, then the value of cotθ + cosecθ is:
A. $$\sqrt 3 $$
B. $$\frac{{\sqrt 3 }}{2}$$
C. $$2\sqrt 3 $$
D. $$\frac{{3\sqrt 3 }}{4}$$
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{
& \frac{{{{\cos }^2}\theta }}{{{{\cot }^2}\theta - {{\cos }^2}\theta }} = 3 \cr
& \frac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta \left( {\frac{{1 - {{\sin }^2}\theta }}{{{{\sin }^2}\theta }}} \right)}} = 3 \cr
& \frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = 3 \cr
& \tan \theta = \sqrt 3 \cr
& \theta = {60^ \circ } \cr
& \cot \theta + {\text{cosec}}\,\theta \cr
& = \cot {60^ \circ } + {\text{cosec}}\,{60^ \circ } \cr
& = \frac{1}{{\sqrt 3 }} + \frac{2}{{\sqrt 3 }} \cr
& = \frac{3}{{\sqrt 3 }} \cr
& = \sqrt 3 \cr} $$
Join The Discussion