Examveda If cos(A - B) = $$\frac{{\sqrt 3 }}{2}$$ and sec A = 2, 0° ≤ A ≤ 90°, 0° ≤ B ≤ 90° then what is the measure of B? A. 60°B. 0°C. 30°D. 90°Answer: Option C Solution (By Examveda Team) $$\eqalign{ & \cos \left( {A - B} \right) = \frac{{\sqrt 3 }}{2} \cr & \cos \left( {A - B} \right) = \cos {30^ \circ } \cr & A - B = {30^ \circ }........\left( {\text{i}} \right) \cr & \sec A = 2 \cr & \cos A = \frac{1}{2} = \cos {60^ \circ } \cr & A = {60^ \circ }........\left( {{\text{ii}}} \right) \cr & {\text{From equation }}\left( {\text{i}} \right){\text{ and }}\left( {{\text{ii}}} \right) \cr & A = {60^ \circ }\,\& \,B = {30^ \circ } \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & \cos \left( {A - B} \right) = \frac{{\sqrt 3 }}{2} \cr & \cos \left( {A - B} \right) = \cos {30^ \circ } \cr & A - B = {30^ \circ }........\left( {\text{i}} \right) \cr & \sec A = 2 \cr & \cos A = \frac{1}{2} = \cos {60^ \circ } \cr & A = {60^ \circ }........\left( {{\text{ii}}} \right) \cr & {\text{From equation }}\left( {\text{i}} \right){\text{ and }}\left( {{\text{ii}}} \right) \cr & A = {60^ \circ }\,\& \,B = {30^ \circ } \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion