Examveda

If \[{\text{f}}\left( {\text{x}} \right) = {\text{R}}\sin \left( {\frac{{\pi {\text{x}}}}{2}} \right) + {\text{S}},{\text{f}}'\left( {\frac{1}{2}} \right) = \sqrt 2 \]       and \[\int\limits_0^1 {{\text{f}}\left( {\text{x}} \right){\text{dx}} = \frac{{2{\text{R}}}}{\pi }} ,\]     then the constants R and S are, respectively

A. \[\frac{2}{\pi }\] and \[\frac{{16}}{\pi }\]

B. \[\frac{2}{\pi }\] and 0

C. \[\frac{4}{\pi }\] and 0

D. \[\frac{4}{\pi }\] and \[\frac{{16}}{\pi }\]

Answer: Option C


This Question Belongs to Engineering Maths >> Calculus

Join The Discussion

Related Questions on Calculus