If \[{\text{f}}\left( {\text{x}} \right) = {\text{R}}\sin \left( {\frac{{\pi {\text{x}}}}{2}} \right) + {\text{S}},{\text{f}}'\left( {\frac{1}{2}} \right) = \sqrt 2 \] and \[\int\limits_0^1 {{\text{f}}\left( {\text{x}} \right){\text{dx}} = \frac{{2{\text{R}}}}{\pi }} ,\] then the constants R and S are, respectively
A. \[\frac{2}{\pi }\] and \[\frac{{16}}{\pi }\]
B. \[\frac{2}{\pi }\] and 0
C. \[\frac{4}{\pi }\] and 0
D. \[\frac{4}{\pi }\] and \[\frac{{16}}{\pi }\]
Answer: Option C
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion