Examveda

If for non-zero x, \[{\rm{af}}\left( {\rm{x}} \right) + {\rm{bf}}\left( {\frac{1}{{\rm{x}}}} \right) = \frac{1}{{\rm{x}}} - 25\]      where a ≠ b then \[\int\limits_1^2 {{\rm{f}}\left( {\rm{x}} \right){\rm{dx}}} \]   is

A. \[\frac{1}{{{{\rm{a}}^2} - {{\rm{b}}^2}}}\left[ {a\left( {\ln 2 - 25} \right) + \frac{{47{\rm{b}}}}{2}} \right]\]

B. \[\frac{1}{{{{\rm{a}}^2} - {{\rm{b}}^2}}}\left[ {a\left( {2\ln 2 - 25} \right) - \frac{{47{\rm{b}}}}{2}} \right]\]

C. \[\frac{1}{{{{\rm{a}}^2} - {{\rm{b}}^2}}}\left[ {a\left( {2\ln 2 - 25} \right) + \frac{{47{\rm{b}}}}{2}} \right]\]

D. \[\frac{1}{{{{\rm{a}}^2} - {{\rm{b}}^2}}}\left[ {a\left( {\ln 2 - 25} \right) - \frac{{47{\rm{b}}}}{2}} \right]\]

Answer: Option A


This Question Belongs to Engineering Maths >> Calculus

Join The Discussion

Related Questions on Calculus