If F(s) and G(s) are the Laplace transform of f(t) and g(t), then their product F(s).G(s) = H(s), where H(s) is the Laplace transform of h(t), is defined as
A. (f.g)(t)
B. $$\int_0^{\text{t}} {{\text{f}}\left( \tau \right){\text{g}}\left( {{\text{t}} - \tau } \right){\text{d}}\tau } $$
C. Both A and B are correct
D. f(t).g(t)
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion