If f(z) = C0 + C1z-1, then $$\oint\limits_{{\text{unit circle}}} {\frac{{1 + {\text{f}}\left( {\text{z}} \right)}}{{\text{z}}}{\text{dz}}} $$ is given by
A. 2πC1
B. 2π(1 + C0)
C. 2πjC1
D. 2πj(1 + C0)
Answer: Option D
A. 2πC1
B. 2π(1 + C0)
C. 2πjC1
D. 2πj(1 + C0)
Answer: Option D
A. -x2 + y2 + constant
B. x2 - y2 + constant
C. x2 + y2 + constant
D. -(x2 + y2) + constant
The product of complex numbers (3 - 2i) and (3 + i4) results in
A. 1 + 6i
B. 9 - 8i
C. 9 + 8i
D. 17 + 6i
If a complex number $${\text{z}} = \frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}$$ then z4 is
A. $$2\sqrt 2 + 2{\text{i}}$$
B. $$\frac{{ - 1}}{2} + \frac{{{\text{i}}{{\sqrt 3 }^2}}}{2}$$
C. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}$$
D. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{8}$$
Join The Discussion