If f(z) has a pole of order n at z = a, then Residue of function f(z) at a is
A. $${\text{Res f}}\left( {\text{a}} \right) = \frac{1}{{\left( {\text{n}} \right)!}}{\left\{ {\frac{{{{\text{d}}^{{\text{n}} - 1}}}}{{{\text{d}}{{\text{z}}^{{\text{n}} - 1}}}}\left( {{{\left( {{\text{z}} - {\text{a}}} \right)}^{{\text{n}} - 1}}{\text{f}}\left( {\text{z}} \right)} \right)} \right\}_{{\text{z}} = {\text{a}}}}$$
B. $${\text{Res f}}\left( {\text{a}} \right) = \frac{1}{{\left( {{\text{n}} - 1} \right)!}}{\left\{ {\frac{{{{\text{d}}^{{\text{n}} - 1}}}}{{{\text{d}}{{\text{z}}^{{\text{n}} - 1}}}}\left( {{{\left( {{\text{z}} - {\text{a}}} \right)}^{{\text{n}} - 1}}{\text{f}}\left( {\text{z}} \right)} \right)} \right\}_{{\text{z}} = {\text{a}}}}$$
C. $${\text{Res f}}\left( {\text{a}} \right) = \frac{1}{{\left( {\text{n}} \right)!}}{\left\{ {\frac{{{{\text{d}}^{{\text{n}} - 1}}}}{{{\text{d}}{{\text{z}}^{{\text{n}} - 1}}}}\left( {{{\left( {{\text{z}} - {\text{a}}} \right)}^{\text{n}}}{\text{f}}\left( {\text{z}} \right)} \right)} \right\}_{{\text{z}} = {\text{a}}}}$$
D. $${\text{Res f}}\left( {\text{a}} \right) = \frac{1}{{\left( {{\text{n}} - 1} \right)!}}{\left\{ {\frac{{{{\text{d}}^{{\text{n}} - 1}}}}{{{\text{d}}{{\text{z}}^{{\text{n}} - 1}}}}\left( {{{\left( {{\text{z}} - {\text{a}}} \right)}^{\text{n}}}{\text{f}}\left( {\text{z}} \right)} \right)} \right\}_{{\text{z}} = {\text{a}}}}$$
Answer: Option D
A. -x2 + y2 + constant
B. x2 - y2 + constant
C. x2 + y2 + constant
D. -(x2 + y2) + constant
The product of complex numbers (3 - 2i) and (3 + i4) results in
A. 1 + 6i
B. 9 - 8i
C. 9 + 8i
D. 17 + 6i
If a complex number $${\text{z}} = \frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}$$ then z4 is
A. $$2\sqrt 2 + 2{\text{i}}$$
B. $$\frac{{ - 1}}{2} + \frac{{{\text{i}}{{\sqrt 3 }^2}}}{2}$$
C. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}$$
D. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{8}$$

Join The Discussion