If L[f(t)] = F(s), then L[f(t - T)] is equal to
A. esTF(s)
B. e-sTF(s)
C. $${{F\left( s \right)} \over {1 + {e^{sT}}}}$$
D. $${{F\left( s \right)} \over {1 - {e^{ - sT}}}}$$
Answer: Option B
A. esTF(s)
B. e-sTF(s)
C. $${{F\left( s \right)} \over {1 + {e^{sT}}}}$$
D. $${{F\left( s \right)} \over {1 - {e^{ - sT}}}}$$
Answer: Option B
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β
Join The Discussion