If \[\overrightarrow {\rm{A}}  = {\rm{xy}}{{{\rm{\hat a}}}_{\rm{x}}} + {{\rm{x}}^2}{{{\rm{\hat a}}}_{\rm{y}}},\,\oint\limits_{\rm{c}} {\overrightarrow {\rm{A}}  \cdot {\rm{d}}\overrightarrow l } \]     over the path shown in the figure is

        A. 0
B. \[\frac{2}{{\sqrt 3 }}\]
C. 1
D. \[2\sqrt 3 \]
Answer: Option C
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion