Examveda

If P + Q + R = 60°, then what is the value of cosQcosR(cosP - sinP) + sinQsinR(sinP - cosP)?

A. $$\frac{1}{2}$$

B. $$\frac{{\sqrt 3 }}{2}$$

C. $$\frac{1}{{\sqrt 2 }}$$

D. $${\sqrt 2 }$$

Answer: Option A

Solution (By Examveda Team)

∵ P + Q + R = 60°
By putting P = 0°, Q = 0° and R = 60°
⇒ cosQcosR(cosP - sinP) + sinQsinR(sinP - cosP)
⇒ 1 × cos60°(cos0° - sin0°) + sin0°.sin60°(sin0° - cos0°)
⇒ $$\frac{1}{2}$$ (1 - 0) + 0
⇒ $$\frac{1}{2}$$

This Question Belongs to Arithmetic Ability >> Trigonometry

Join The Discussion

Related Questions on Trigonometry