If (px3 - 8x2 - qx + 1), the expression is completely divisible by the expression (3x2 - 4x + 1). Then what will be the value of p and q respectively?
A. $$\left( {\frac{{21}}{4},\,\frac{{15}}{8}} \right)$$
B. $$\left( {6,\,1} \right)$$
C. $$\left( {\frac{{33}}{4},\,\frac{5}{4}} \right)$$
D. $$\left( {1,\,6} \right)$$
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{
& 3{x^2} - 4x + 1 = 0 \cr
& 3{x^2} - 3x - x + 1 = 0 \cr
& \left( {3x - 1} \right)\left( {x - 1} \right) = 0 \cr
& 3x - 1 = 0,\,\,x - 1 = 0 \cr
& \Rightarrow x = 1,\,\frac{1}{3} \cr
& {\text{Put }}x = 1{\text{ in }}p{x^3} - 8{x^2} - qx + 1 \cr
& \Rightarrow p - 8 - q + 1 = 0 \cr
& \Rightarrow p - q = 7 \cr
& {\text{Go through the option C}} \cr
& p = \frac{{33}}{4},\,q = \frac{5}{4} \cr
& \Rightarrow \frac{{33 - 5}}{4} = 7 \cr
& \Rightarrow 7 = 7 \cr} $$
Join The Discussion