If secθ + tanθ = p, (p > 1) then $$\frac{{{\text{cosec}}\,\theta + 1}}{{{\text{cosec}}\,\theta - 1}} = ?$$
A. 2p2
B. $$\frac{{p + 1}}{{p - 1}}$$
C. p2
D. $$\frac{{p - 1}}{{p + 1}}$$
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{
& \sec \theta + \tan \theta = p \cr
& \frac{{\sec \theta + \tan \theta }}{{\sec \theta - \tan \theta }} = \frac{p}{{\frac{1}{p}}} \cr
& \frac{{\sec \theta + \tan \theta }}{{\sec \theta - \tan \theta }} = \frac{{{p^2}}}{1} \cr
& {\text{Apply componendo and dividendo}} \cr
& \frac{{\sec \theta }}{{\tan \theta }} = \frac{{{p^2} + 1}}{{{p^2} - 1}} \cr
& \frac{{\sec \theta .\cos \theta }}{{\tan \theta }} = \frac{{{p^2} + 1}}{{{p^2} - 1}} \cr
& \frac{{{\text{cosec }}\theta }}{1} = \frac{{{p^2} + 1}}{{{p^2} - 1}} \cr
& {\text{Apply again componendo and dividendo}} \cr
& \frac{{{\text{cosec }}\theta + 1}}{{{\text{cosec }}\theta - 1}} = \frac{{{p^2}}}{1} \cr} $$
Join The Discussion