Examveda If $$\sec \theta + \frac{1}{{\cos \theta }} = 2,$$ find the value of $${\sec ^{55}}\theta + \frac{1}{{{{\sec }^{55}}\theta }} = ?$$ A. 2C. 1D. 55Answer: Option A Solution (By Examveda Team) $$\eqalign{ & \sec \theta + \frac{1}{{\cos \theta }} = 2 \cr & \sec \theta + \sec \theta = 2 \cr & \sec \theta = 1 \cr & {\sec ^{55}}\theta + \frac{1}{{{{\sec }^{55}}\theta }} \cr & = {\left( 1 \right)^{55}} + \frac{1}{{{{\left( 1 \right)}^{55}}}} \cr & = 1 + 1 \cr & = 2 \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & \sec \theta + \frac{1}{{\cos \theta }} = 2 \cr & \sec \theta + \sec \theta = 2 \cr & \sec \theta = 1 \cr & {\sec ^{55}}\theta + \frac{1}{{{{\sec }^{55}}\theta }} \cr & = {\left( 1 \right)^{55}} + \frac{1}{{{{\left( 1 \right)}^{55}}}} \cr & = 1 + 1 \cr & = 2 \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion