Solution (By Examveda Team)
$$\eqalign{
& \sin {\text{ }}\alpha + \cos \beta = 2 \cr
& {\bf{Shortcut\,\, method:}} \cr
& {\text{Put, }}\alpha = {90^ \circ },\beta = {0^ \circ } \cr
& \Leftrightarrow {\text{sin }}{90^ \circ } + {\text{cos }}{0^ \circ } = 2 \cr
& \Leftrightarrow 1 + 1 = 2 \cr
& \Leftrightarrow 2 = 2\left[ {{\text{Matched}}} \right] \cr
& {\text{So, }}\alpha = {90^ \circ },\beta = {0^ \circ } \cr
& \Rightarrow {\text{sin }}{\left( {\frac{{2\alpha + \beta }}{3}} \right)^ \circ }{\text{ }} \cr
& \Rightarrow {\text{sin }}{\left( {\frac{{2 \times {{90}^ \circ } + {0^ \circ }}}{3}} \right)^ \circ } \cr
& \Rightarrow {\text{sin }}{\left( {\frac{{{{180}^ \circ }}}{3}} \right)^ \circ } \cr
& \Rightarrow {\text{sin }}{60^ \circ } = \cos {30^ \circ } = \frac{{\sqrt 3 }}{2} \cr
& {\text{Take cos}}\frac{\alpha }{3} = \cos \frac{{{{90}^ \circ }}}{3} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\text{cos 3}}{0^ \circ } \cr
& {\text{So, this is answer }}{\text{.}} \cr} $$
Join The Discussion