If $$sL\left[ {f\left( t \right)} \right] = {\omega \over {\left( {{s^2} + {\omega ^2}} \right)}},$$ then the value of $$\mathop {\lim }\limits_{t \to \infty } f\left( t \right)$$
A. Cannot be determined
B. Is zero
C. Is unity
D. Is infinite
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion