If √3tanθ = 3sinθ, then what is the value of sin2θ - cos2θ?
A. $$\frac{1}{2}$$
B. $$\frac{1}{3}$$
C. $$\frac{1}{5}$$
D. $$\frac{1}{4}$$
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & \sqrt 3 \tan \theta = 3\sin \theta \cr & \Rightarrow \frac{{\tan \theta }}{{\sin \theta }} = \frac{3}{{\sqrt 3 }} \cr & \Rightarrow \frac{{\sin \theta }}{{\cos \theta }} \times \frac{1}{{\sin \theta }} = \frac{3}{{\sqrt 3 }} \times \frac{{\sqrt 3 }}{{\sqrt 3 }} \cr & \Rightarrow \frac{1}{{\cos \theta }} = \sqrt 3 \cr & \Rightarrow \cos \theta = \frac{1}{{\sqrt 3 }} \cr & \Rightarrow {\cos ^2}\theta = \frac{1}{3} \cr & \therefore \,{\sin ^2}\theta - {\cos ^2}\theta \cr & = 1 - {\cos ^2}\theta - {\cos ^2}\theta \cr & = 1 - 2{\cos ^2}\theta \cr & = 1 - 2 \times \frac{1}{3} \cr & = \frac{1}{3} \cr} $$Related Questions on Trigonometry
A. x = -y
B. x > y
C. x = y
D. x < y

Join The Discussion