If tanθ + cotθ = -2, then the value of tan9θ + cot9θ is:
A. -2
B. 0
C. 2
D. -1
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & \tan \theta + \cot \theta = - 2 \cr & \Rightarrow \tan \theta + \frac{1}{{\tan \theta }} = - 2 \cr & \Rightarrow \tan \theta = - 1 \cr & \Rightarrow {\tan ^9}\theta + {\cot ^9}\theta \cr & = {\tan ^9}\theta + \frac{1}{{{{\tan }^9}\theta }} \cr & = {\left( { - 1} \right)^9} + \frac{1}{{{{\left( { - 1} \right)}^9}}} \cr & = - 1 - 1 \cr & = - 2 \cr} $$Related Questions on Trigonometry
A. x = -y
B. x > y
C. x = y
D. x < y

Join The Discussion