Solution (By Examveda Team)
$$\eqalign{
& {\text{ ta}}{{\text{n}}^2}\alpha = 1 + 2{\text{ta}}{{\text{n}}^2}\beta \cr
& \Rightarrow {\text{se}}{{\text{c}}^2}\alpha - 1 = 1 + 2\left( {{\text{se}}{{\text{c}}^2}\beta - 1} \right) \cr
& \Rightarrow {\sec ^2}\alpha - 1 = 2{\sec ^2}\beta - 1 \cr
& \Rightarrow \frac{1}{{{\text{co}}{{\text{s}}^2}\alpha }} = \frac{2}{{{\text{co}}{{\text{s}}^2}\beta }} \cr
& \Rightarrow \sqrt 2 {\text{cos}}\alpha = {\text{cos}}\beta \cr
& \therefore \sqrt 2 {\text{cos}}\alpha - {\text{cos}}\beta = 0 \cr
& \cr
& {\bf{Alternate:}} \cr
& {\text{ ta}}{{\text{n}}^2}\alpha = 1 + 2{\text{ta}}{{\text{n}}^2}\beta \cr
& {\text{Put }}\beta = {45^ \circ } \cr
& {\text{ ta}}{{\text{n}}^2}\alpha = 1 + 2.{\text{ta}}{{\text{n}}^2}{45^ \circ } \cr
& {\text{ ta}}{{\text{n}}^2}\alpha = 3 \cr
& {\text{ tan }}\alpha = \sqrt 3 \cr
& \alpha = {60^ \circ } \cr
& {\text{Put }}\alpha = {60^ \circ },{\text{and }}\beta = {45^ \circ } \cr
& = \sqrt 2 {\text{cos}}\alpha - {\text{cos}}\beta \cr
& = \sqrt 2 {\text{cos }}{60^ \circ } - {\text{cos }}{45^ \circ } \cr
& = \sqrt 2 \times \frac{1}{2} - \frac{1}{{\sqrt 2 }} \cr
& = \frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }} \cr
& = 0 \cr} $$
Join The Discussion