Solution (By Examveda Team)
$$\eqalign{
& {\text{ta}}{{\text{n}}^4}\theta + {\text{ta}}{{\text{n}}^2}\theta = 1\,......({\text{i}}) \cr
& \because {\sec ^2}\theta - {\text{ta}}{{\text{n}}^2}\theta = 1 \cr
& \Rightarrow {\text{ta}}{{\text{n}}^2}\theta \left( {1 + {\text{ta}}{{\text{n}}^2}\theta } \right) = 1 \cr
& \Rightarrow {\text{ta}}{{\text{n}}^2}\theta \left( {{{\sec }^2}\theta } \right) = 1 \cr
& \Rightarrow {\text{ta}}{{\text{n}}^2}\theta = \frac{1}{{{{\sec }^2}\theta }} \cr
& \Rightarrow {\text{ta}}{{\text{n}}^2}\theta = {\text{co}}{{\text{s}}^2}\theta \cr
& \because {\text{ co}}{{\text{s}}^4}\theta + {\text{co}}{{\text{s}}^2}\theta \cr
& = {\left( {{\text{co}}{{\text{s}}^2}\theta } \right)^2} + {\text{co}}{{\text{s}}^2}\theta \cr
& = {\left( {{\text{ta}}{{\text{n}}^2}\theta } \right)^2} + {\text{ta}}{{\text{n}}^2}\theta \cr
& = {\text{ta}}{{\text{n}}^4}\theta + {\text{ta}}{{\text{n}}^2}\theta \cr
& = 1{\text{ from equation }}\left( {\text{i}} \right) \cr} $$
Join The Discussion