If the expression $${\text{2}}\frac{1}{2}{\text{ of }}\frac{3}{4} \times \frac{1}{2} \div \frac{3}{2} + \frac{1}{2} \div \frac{3}{2}\left[ {\frac{2}{3} - \frac{1}{2}{\text{ of }}\frac{2}{3}} \right]$$ is simplified, we get -
A. $$\frac{1}{2}$$
B. $$\frac{7}{8}$$
C. $${\text{1}}\frac{5}{8}$$
D. $${\text{2}}\frac{3}{5}$$
Answer: Option C
Solution(By Examveda Team)
$$\eqalign{
& {\text{Given expression,}} \cr
& = \frac{5}{2}of\frac{3}{4} \times \frac{1}{2} \div \frac{3}{2} + \frac{1}{2} \div \frac{3}{2}\left[ {\frac{2}{3} - \frac{1}{3}} \right] \cr
& = \frac{5}{2}of\frac{3}{4} \times \frac{1}{2} \div \frac{3}{2} + \frac{1}{2} \div \left( {\frac{3}{2} \times \frac{1}{3}} \right) \cr
& = \frac{{15}}{8} \times \frac{1}{2} \div \frac{3}{2} + \frac{1}{2} \div \frac{1}{2} \cr
& = \frac{{15}}{8} \times \frac{1}{2} \times \frac{2}{3} + \frac{1}{2} \times 2 \cr
& = \frac{5}{8} + 1 \cr
& = \,1\frac{5}{8} \cr} $$
Join The Discussion