If the step response of a causal, linear time-invariant system is a(t), then the response of the system to a general input x(t) would be
A. $$\int\limits_{{0^ + }}^t {\frac{{da\left( \tau \right)}}{{d\tau }}x\left( {t - \tau } \right)d\tau } $$
B. $$a\left( 0 \right)x\left( t \right) + \int\limits_{{0^ + }}^t {\frac{{da\left( \tau \right)}}{{d\tau }}x\left( {t - \tau } \right)d\tau } $$
C. $$x\left( 0 \right)a\left( t \right) + \int\limits_{{0^ + }}^t {x\left( \tau \right)a\left( {t - \tau } \right)d\tau } $$
D. $$x\left( 0 \right)a\left( t \right) + \int\limits_{{0^ + }}^t {\frac{{da\left( \tau \right)}}{{d\tau }}x\left( {t - \tau } \right)d\tau } $$
Answer: Option A
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion