If the vector function
\[\overrightarrow {\rm{F}} = {{\rm{\hat a}}_{\rm{x}}}\left( {3{\rm{y}} - {{\rm{k}}_1}{\rm{z}}} \right) + {{\rm{\hat a}}_{\rm{y}}}\left( {{{\rm{k}}_2}{\rm{x}} - 2{\rm{z}}} \right) - {{\rm{\hat a}}_{\rm{z}}}\left( {{{\rm{k}}_3}{\rm{y}} + {\rm{z}}} \right)\]
is irrotational, then the values of the constants k1, k2 and k3 respectively, are
A. 0.3, -2.5, 0.5
B. 0.0, 3.0, 2.0
C. 0.3, 0.33, 0.5
D. 4.0, 3.0, 2.0
Answer: Option B
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion