If the vectors e1 = (1, 0, 2), e2 = (0, 1, 0) and e3 = (-2, 0, 1) form an orthogonal basis of the three-dimensional real space R3, then the vector u = (4, 3, -3) \[ \in \] R3 can be expressed as
A. \[{\text{u}} = - \frac{2}{5}{{\text{e}}_1} - 3{{\text{e}}_2} - \frac{{11}}{5}{{\text{e}}_3}\]
B. \[{\text{u}} = - \frac{2}{5}{{\text{e}}_1} - 3{{\text{e}}_2} + \frac{{11}}{5}{{\text{e}}_3}\]
C. \[{\text{u}} = - \frac{2}{5}{{\text{e}}_1} + 3{{\text{e}}_2} + \frac{{11}}{5}{{\text{e}}_3}\]
D. \[{\text{u}} = - \frac{2}{5}{{\text{e}}_1} + 3{{\text{e}}_2} - \frac{{11}}{5}{{\text{e}}_3}\]
Answer: Option D
Related Questions on Linear Algebra
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2

Join The Discussion