If $$x\cos \theta - y\sin \theta $$ = $$\sqrt {{x^2} + {y^2}} $$ and $$\frac{{{{\cos }^2}\theta }}{{{a^2}}}$$ + $$\frac{{{{\sin }^2}\theta }}{{{b^2}}}$$ = $$\frac{1}{{{x^2} + {y^2}}}{\text{,}}$$ then the correct relation is?
A. $$\frac{{{x^2}}}{{{b^2}}} - \frac{{{y^2}}}{{{a^2}}} = 1$$
B. $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$
C. $$\frac{{{x^2}}}{{{b^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1$$
D. $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{
& x\cos \theta - y\sin \theta = \sqrt {{x^2} + {y^2}} \,.....(i) \cr
& \frac{{{{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}} = \frac{1}{{{x^2} + {y^2}}}\,.....(ii) \cr
& \frac{x}{{\sqrt {{x^2} + {y^2}} }}\cos \theta + \frac{{ - y}}{{\sqrt {{x^2} + {y^2}} }}\sin \theta = 1 \cr
& {\text{from equation (i)}} \cr
& \Rightarrow \sin \theta = \frac{{ - y}}{{\sqrt {{x^2} + {y^2}} }} \cr
& \Rightarrow \cos \theta = \frac{x}{{\sqrt {{x^2} + {y^2}} }} \cr
& {\text{Put value in equation (ii)}} \cr
& \therefore \frac{{{\text{co}}{{\text{s}}^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}} = \frac{1}{{{x^2} + {y^2}}} \cr
& \Rightarrow \frac{{{x^2}}}{{\left( {{x^2} + {y^2}} \right){a^2}}} + \frac{{{y^2}}}{{\left( {{x^2} + {y^2}} \right){b^2}}} = \frac{1}{{{x^2} + {y^2}}} \cr
& \Rightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1 \cr} $$
Join The Discussion