If xin(t) = sin(2$$\pi $$ × 4000t) + 0.75sin(2$$\pi $$ × 5000t + $$\frac{\pi }{4}$$) is sampled with Fs = 16000 Hz. Calculate X(0) if $$X\left( m \right) = \sum\nolimits_{n = 0}^{N - 1} {x\left( n \right){e^{ - \frac{{j2\pi nm}}{N}}}} .$$ When N = 8, where x(n) = xin(nts)
A. 0.0 - j4.0
B. 0.0 - j0.0
C. 1.414 + j1.414
D. 0.0 + j4.0
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion