If $$x\left[ n \right] = {\left( {{1 \over 3}} \right)^{\left| n \right|}} - {\left( {{1 \over 2}} \right)^n}u\left[ n \right],$$ then the region of convergence (ROC) of its z-transform in the z-plane will be
A. $${1 \over 3} < \left| z \right| < 3$$
B. $${1 \over 3} < \left| z \right| < {1 \over 2}$$
C. $${1 \over 2} < \left| z \right| < 3$$
D. $${1 \over 3} < \left| z \right|$$
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion