If z = xy $$l$$n(xy), then
A. $${\text{x}}\frac{{\partial {\text{z}}}}{{\partial {\text{x}}}} + {\text{y}}\frac{{\partial {\text{z}}}}{{\partial {\text{y}}}} = 0$$
B. $${\text{y}}\frac{{\partial {\text{z}}}}{{\partial {\text{x}}}} = {\text{x}}\frac{{\partial {\text{z}}}}{{\partial {\text{y}}}}$$
C. $${\text{x}}\frac{{\partial {\text{z}}}}{{\partial {\text{x}}}} = {\text{y}}\frac{{\partial {\text{z}}}}{{\partial {\text{y}}}}$$
D. $${\text{y}}\frac{{\partial {\text{z}}}}{{\partial {\text{x}}}} + {\text{x}}\frac{{\partial {\text{z}}}}{{\partial {\text{y}}}} = 0$$
Answer: Option C
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion