If z0 is a zero of a (real-valued) linear-phase FIR filter then following is/are also zero/zeros of a (real-valued) linear-phase FIR filter,
A. $${\text{z}}_0^ * $$
B. $$\frac{1}{{{{\text{z}}_0}}}$$
C. $$\frac{1}{{{{\text{z}}_0}}},\,{\text{z}}_0^ * {\text{ and }}\frac{1}{{{\text{z}}_0^ * }}$$
D. $$\frac{1}{{{{\text{z}}_0}}}\,{\text{and}}\,\frac{1}{{{\text{z}}_0^ * }}$$
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion