In a reciprocating steam engine, when the crank has turned from inner dead center through an angle $$\theta $$, the angular velocity of the connecting rod is given by
A. $$\frac{{\omega \,\sin \theta }}{{{{\left( {{{\text{n}}^2} - {{\sin }^2}\theta } \right)}^{\frac{1}{2}}}}}$$
B. $$\frac{{\omega \,\cos\theta }}{{{{\left( {{{\text{n}}^2} - {{\cos }^2}\theta } \right)}^{\frac{1}{2}}}}}$$
C. $$\frac{{\omega \,\sin \theta }}{{{{\left( {{{\text{n}}^2} - {{\cos }^2}\theta } \right)}^{\frac{1}{2}}}}}$$
D. $$\frac{{\omega \,\cos\theta }}{{{{\left( {{{\text{n}}^2} - {{\sin }^2}\theta } \right)}^{\frac{1}{2}}}}}$$
Answer: Option D
Join The Discussion