Input x(t) and output y(t) of an LTI system are related by the differential equation y"(t) - y'(t) - 6y(t) = x(t). If the system is neither causal nor stable, the impulse response h(t) of the system is
A. $${1 \over 5}{e^{3t}}u\left( { - t} \right) + {1 \over 5}{e^{ - 2t}}u\left( { - t} \right)$$
B. $$ - {1 \over 5}{e^{3t}}u\left( { - t} \right) + {1 \over 5}{e^{ - 2t}}u\left( { - t} \right)$$
C. $${1 \over 5}{e^{3t}}u\left( { - t} \right) - {1 \over 5}{e^{ - 2t}}u\left( t \right)$$
D. $$ - {1 \over 5}{e^{3t}}u\left( { - t} \right) - {1 \over 5}{e^{ - 2t}}u\left( t \right)$$
Answer: Option B
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion