Input x(t) and output y(t) of an LTI system are related by the differential equation y"(t) - y'(t) - 6y(t) = x(t). If the system is neither causal nor stable, the impulse response h(t) of the system is
A. $${1 \over 5}{e^{3t}}u\left( { - t} \right) + {1 \over 5}{e^{ - 2t}}u\left( { - t} \right)$$
B. $$ - {1 \over 5}{e^{3t}}u\left( { - t} \right) + {1 \over 5}{e^{ - 2t}}u\left( { - t} \right)$$
C. $${1 \over 5}{e^{3t}}u\left( { - t} \right) - {1 \over 5}{e^{ - 2t}}u\left( t \right)$$
D. $$ - {1 \over 5}{e^{3t}}u\left( { - t} \right) - {1 \over 5}{e^{ - 2t}}u\left( t \right)$$
Answer: Option B
Join The Discussion