Integration of the complex function $${\text{f}}\left( {\text{z}} \right) = \frac{{{{\text{z}}^2}}}{{{{\text{z}}^2} - 1}},$$ in the counterclockwise direction, around |z - 1| = 1, is
A. -πi
B. 0
C. πi
D. 2πi
Answer: Option C
A. -πi
B. 0
C. πi
D. 2πi
Answer: Option C
A. -x2 + y2 + constant
B. x2 - y2 + constant
C. x2 + y2 + constant
D. -(x2 + y2) + constant
The product of complex numbers (3 - 2i) and (3 + i4) results in
A. 1 + 6i
B. 9 - 8i
C. 9 + 8i
D. 17 + 6i
If a complex number $${\text{z}} = \frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}$$ then z4 is
A. $$2\sqrt 2 + 2{\text{i}}$$
B. $$\frac{{ - 1}}{2} + \frac{{{\text{i}}{{\sqrt 3 }^2}}}{2}$$
C. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}$$
D. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{8}$$
Join The Discussion