Laplace transform of the function f(t) is given by $${\text{F}}\left( {\text{s}} \right) = {\text{L}}\left\{ {{\text{f}}\left( {\text{t}} \right)} \right\} = \int_0^\infty {{\text{f}}\left( {\text{t}} \right){{\text{e}}^{ - {\text{st}}}}{\text{dt}}{\text{.}}} $$ Laplace transform of the function shown below is given by

A. $$\frac{{1 - {{\text{e}}^{ - 2{\text{s}}}}}}{{\text{s}}}$$
B. $$\frac{{1 - {{\text{e}}^{ - {\text{s}}}}}}{{2{\text{s}}}}$$
C. $$\frac{{2 - 2{{\text{e}}^{ - {\text{s}}}}}}{{\text{s}}}$$
D. $$\frac{{1 - 2{{\text{e}}^{ - {\text{s}}}}}}{{\text{s}}}$$
Answer: Option C
A. $$\frac{1}{{{\text{s}} + {\text{a}}}}$$
B. $$\frac{1}{{{\text{s}} - {\text{a}}}}$$
C. $$\frac{1}{{{\text{a}} - {\text{s}}}}$$
D. $$\infty $$
Evaluate $$\int\limits_0^\infty {\frac{{\sin {\text{t}}}}{{\text{t}}}{\text{dt}}} $$
A. $$\pi $$
B. $$\frac{\pi }{2}$$
C. $$\frac{\pi }{4}$$
D. $$\frac{\pi }{8}$$
A. $$\frac{{1 + {{\text{s}}^2}}}{{{{\left( {{{\text{s}}^2} - 1} \right)}^2}}}$$
B. $$\frac{{{\text{st}}}}{{\left( {{{\text{s}}^2} - 1} \right)}}$$
C. $$\frac{{1 - {{\text{s}}^2}}}{{{{\left( {{{\text{s}}^2} - 1} \right)}^2}}}$$
D. $$\frac{{1 + {{\text{s}}^2}}}{{1 - {{\text{s}}^2}}}$$
A. $$\frac{2}{{{\text{s}} + 1}}$$
B. $$\frac{4}{{{\text{s}} + 1}}$$
C. $$\frac{4}{{{{\text{s}}^2} + 1}}$$
D. $$\frac{2}{{{{\text{s}}^2} + 1}}$$

Join The Discussion