Let A be n × n real valued square symmetric matrix of rank 2 with \[\sum\limits_{{\text{i}} = 1}^{\text{n}} {\sum\limits_{{\text{j}} = 1}^{\text{n}} {{\text{A}}_{{\text{ij}}}^2} } = 50.\] Consider the following statements.
I. One eigen value must be in [-5, 5]
II. The eigen value with the largest magnitude must be strictly greater than 5.
Which of the above statements about eigen values of A is/are necessarily CORRECT?
A. Both I and II
B. I only
C. II only
D. Neither I nor II
Answer: Option B
Related Questions on Linear Algebra
A. 3, 3 + 5j, 6 - j
B. -6 + 5j, 3 + j, 3 - j
C. 3 + j, 3 - j, 5 + j
D. 3, -1 + 3j, -1 - 3j
A. 1024 and -1024
B. 1024√2 and -1024√2
C. 4√2 and -4√2
D. 512√2 and -512√2

Join The Discussion