Let $$\nabla \cdot \left( {{\text{f}}\overrightarrow {\text{v}} } \right) = {{\text{x}}^2}{\text{y}} + {{\text{y}}^2}{\text{z}} + {{\text{z}}^2}{\text{x}},$$ where f and v are scalar and vector fields respectively. If $$\overrightarrow {\text{v}} = {\text{y}}\overrightarrow {\text{i}} + {\text{z}}\overrightarrow {\text{j}} + {\text{x}}\overrightarrow {\text{k}} ,$$ then $$\overrightarrow {\text{v}} \cdot \nabla {\text{f}}$$ is
A. x2y + y2z + z2x
B. 2xy + 2yz + 2zx
C. x + y + z
D. 0
Answer: Option A
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion