Let $$g\left( t \right) = {e^{ - \pi {t^2}}}$$ and h(t) is a filter matched to g(t). If g(t) is applied as input to h(t), then the Fourier transform of the output is
A. $${e^{ - \pi {t^2}}}$$
B. $${e^{ - {{\pi {t^2}} \over 2}}}$$
C. $${e^{ - \pi \left| f \right|}}$$
D. $${e^{ - 2\pi {t^2}}}$$
Answer: Option D
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion