Let h(t) be the impulse response of a linear time invariant system. Then the response of the system for any input u(t) is
A. $$\int\limits_0^t {h\left( \tau \right)} u\left( {t - \tau } \right)d\tau $$
B. $${d \over {dt}}\int\limits_0^t {h\left( \tau \right)} u\left( {t - \tau } \right)d\tau $$
C. $$\int\limits_0^t {\left[ {\int\limits_0^t {h\left( \tau \right)} u\left( {t - \tau } \right)d\tau } \right]} dt$$
D. $$\int\limits_0^t {{h^2}\left( \tau \right)} u\left( {t - \tau } \right)d\tau $$
Answer: Option A
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion